Inhibitory effects of surfactant protein A on surfactant phospholipid hydrolysis by secreted phospholipases A2.

نویسندگان

  • Sophie Chabot
  • Kamen Koumanov
  • Gérard Lambeau
  • Michael H Gelb
  • Viviane Balloy
  • Michel Chignard
  • Jeffrey A Whitsett
  • Lhousseine Touqui
چکیده

Hydrolysis of surfactant phospholipids by secreted phospholipases A(2) (sPLA(2)) contributes to surfactant dysfunction in acute respiratory distress syndrome. The present study demonstrates that sPLA(2)-IIA, sPLA(2)-V, and sPLA(2)-X efficiently hydrolyze surfactant phospholipids in vitro. In contrast, sPLA(2)-IIC, -IID, -IIE, and -IIF have no effect. Since purified surfactant protein A (SP-A) has been shown to inhibit sPLA(2)-IIA activity, we investigated the in vitro effect of SP-A on the other active sPLA(2) and the consequences of sPLA(2)-IIA inhibition by SP-A on surfactant phospholipid hydrolysis. SP-A inhibits sPLA(2)-X activity, but fails to interfere with that of sPLA(2)-V. Moreover, in vitro inhibition of sPLA(2)-IIA-induces surfactant phospholipid hydrolysis correlates with the concentration of SP-A in surfactant. Intratracheal administration of sPLA(2)-IIA to mice causes hydrolysis of surfactant phosphatidylglycerol. Interestingly, such hydrolysis is significantly higher for SP-A gene-targeted mice, showing the in vivo inhibitory effect of SP-A on sPLA(2)-IIA activity. Administration of sPLA(2)-IIA also induces respiratory distress, which is more pronounced in SP-A gene-targeted mice than in wild-type mice. We conclude that SP-A inhibits sPLA(2) activity, which may play a protective role by maintaining surfactant integrity during lung injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrolysis of surfactant-associated phosphatidylcholine by mammalian secretory phospholipases A2 R. DUNCAN HITE,1 MICHAEL C. SEEDS,1 RANDY B. JACINTO,1 R. BALASUBRAMANIAN,1 MOSELEY WAITE,2 AND DAVID BASS1

Hite, R. Duncan, Michael C. Seeds, Randy B. Jacinto, R. Balasubramanian, Moseley Waite, and David Bass. Hydrolysis of surfactant-associated phosphatidylcholine by mammalian secretory phospholipases A2. Am. J. Physiol. 275 (Lung Cell. Mol. Physiol. 19): L740–L747, 1998.—Hydrolysis of surfactant-associated phospholipids by secretory phospholipases A2 is an important potential mechanism for surfac...

متن کامل

Basic residues of human group IIA phospholipase A2 are important for binding to factor Xa and prothrombinase inhibition comparison with other mammalian secreted phospholipases A2.

Human secreted group IIA phospholipase A2 (hGIIA) was reported to inhibit prothrombinase activity because of binding to factor Xa. This study further shows that hGIIA and its catalytically inactive H48Q mutant prolong the lag time of thrombin generation in human platelet-rich plasma with similar efficiency, indicating that hGIIA exerts an anticoagulant effect independently of phospholipid hydro...

متن کامل

Surfactant protein B inhibits secretory phospholipase A2 hydrolysis of surfactant phospholipids.

Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-...

متن کامل

ALUNG January 22/1

Dhand, Rajiv, Jared Young, Andelle Teng, Subbiah Krishnasamy, and Nicholas J. Gross. Is dipalmitoylphosphatidylcholine a substrate for convertase? Am. J. Physiol. Lung Cell. Mol. Physiol. 278: L19–L24, 2000.—Convertase has homology with carboxylesterases, but its substrate(s) is not known. Accordingly, we determined whether dipalmitoylphosphatidylcholine (DPPC), the major phospholipid in surfac...

متن کامل

Lysophospholipid generation and phosphatidylglycerol depletion in phospholipase A(2)-mediated surfactant dysfunction.

Pulmonary surfactant's complex mixture of phospholipids and proteins reduces the work of breathing by lowering alveolar surface tension during respiration. One mechanism of surfactant damage appears to be the hydrolysis of phospholipid by phospholipases activated in the inflamed lung. Humans have several candidate secretory phospholipase A(2) (sPLA(2)) enzymes in lung cells and infiltrating leu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 171 2  شماره 

صفحات  -

تاریخ انتشار 2003